On boundary domination in the Jensen-Mercer inequality

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Variant of the Jensen–mercer Inequality for Operators

Some refinements of the Jensen-Mercer inequality for operators are presented. Obtained results are used to refine some comparision inequalities between power and quasiarithmetic means for operators. Mathematics subject classification (2000): 47A63, 47A64.

متن کامل

Bounds for the Normalized Jensen – Mercer Functional

We introduce the normalized Jensen-Mercer functional Mn( f ,x, p) = f (a)+ f (b)− n ∑ i=1 pi f (xi)− f ( a+b− n ∑ i=1 pixi ) and establish the inequalities of type MMn( f ,x,q) Mn( f ,x, p) mMn( f ,x,q) , where f is a convex function, x = (x1, . . . ,xn) and m and M are real numbers satisfying certain conditions. We prove them for the case when p and q are nonnegative n -tuples and when p and q...

متن کامل

On the refinements of the Jensen-Steffensen inequality

* Correspondence: [email protected] Abdus Salam School of Mathematical Sciences, GC University, 68-b, New Muslim Town, Lahore 54600, Pakistan Full list of author information is available at the end of the article Abstract In this paper, we extend some old and give some new refinements of the JensenSteffensen inequality. Further, we investigate the log-convexity and the exponential conve...

متن کامل

On the Jensen type inequality for generalized Sugeno integral

We prove necessary and sufficient conditions for the validity of Jensen type inequalities for generalized Sugeno integral. Our proofs make no appeal to the continuity of neither the fuzzy measure nor the operators. For several choices of operators, we characterize the classes of functions for which the corresponding inequalities are satisfied.

متن کامل

On the Jensen-Steffensen inequality for generalized convex functions

Jensen–Steffensen type inequalities for P -convex functions and functions with nondecreasing increments are presented. The obtained results are used to prove a generalization of Čebyšev’s inequality and several variants of Hölder’s inequality with weights satisfying the conditions as in the Jensen–Steffensen inequality. A few well-known inequalities for quasi-arithmetic means are generalized.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Inequalities

سال: 2015

ISSN: 1846-579X

DOI: 10.7153/jmi-09-80